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What Is Smart Beta?

Part 1: Origins
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ALPHA AND BETA

● Beta
• An investment portfolio’s relationship with market risk

• More precisely, beta is a measure of the covariance between the 
returns in excess of the risk free rate

● Alpha
• The regular addition to return, over and above that element of 

return that comes from being exposed to the market

● ε i
• Luck!!!

� �� − �� = �� + �(� �� − ��) + εi
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ORIGINS OF SMART BETA
TIMELINE

Building on Markowitz’s 
mean variance analysis 
Sharpe develops the 
Capital Asset Pricing 
Model (CAPM)

1960s 1970s 1980s 1990s 2000s

Haugen and Heins find 
strong negative 
relationship between 
return and volatility.

Banz finds that small cap 
stocks outperformed large 
cap stocks 
Basu finds low PE stocks 
generate higher returns 
relative to high PE stocks

Practitioners begin to 
launch investment 
products based on the 
academic evidence of 
“anomalies” 

Jegadeesh and Titman 
found buying past winners 
and selling past losers was 
highly profitable.
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PORTFOLIOS BASED ON SIZE
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PORTFOLIOS BASED ON PRICE/EARNINGS
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PORTFOLIOS BASED ON BOOK TO MARKET
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PORTFOLIOS BASED ON MOMENTUM
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HOW WERE THESE RESULTS GENERATED?

● The process should look very familiar

(a) At the end of a quarter, consider all the stocks in the London Stock
Exchange;

(b) identify the 20% of stocks with the highest dividend yield;

(c) invest in these stocks on either an equally-weighted or a market cap-
weighted basis;

(d) hold this portfolio for the following quarter;

(e) at the end of the quarter repeat the process, by once again identifying
the 20% of stocks with the highest dividend and investing in these
stocks on either an equally-weighted or a market cap-weighted basis;

(f) and then simply repeat this process.

9



© Cass Business School Smart Beta: A New Era In Index Investing

THIS LED TO OTHER BETAS

● A three factor model

  )](β[)](β[]R)E(Rβ[αR)E(R 32fm10fi HMLSMB 
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● And now a new 5 factor model
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What Is The Evidence For Smart Beta?

Part 2: What Lies Beneath?
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WHAT WE DID

● US equity data from CRSP

• Selected 500 largest market cap universe with 
requirement of 5 years of continuous historical returns 
each year

• Sample period December 1968 to December 2014

● Produced indices replicating 8 popular smart beta 
approaches over a 46 year period

• Apples to apples comparison
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99.8% correlation to the S&P 500
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OUR OWN “SMART” BETA IDEA

● We construct own index using an “innovative” weighting 
scheme
• Using the ticker symbol for each stock we calculate the ScrabbleTM

score for each stock 
– (1 point)-A, E, I, O, U, L, N, S, T, R.

– (2 points)-D, G.

– (3 points)-B, C, M, P.

– (4 points)-F, H, V, W, Y.

– (5 points)-K.

– (8 points)- J, X.

– (10 points)-Q, Z

• We then sum the scores and divide each stocks score by the total to 
calculate the weight e.g. XOM has twice the weight of AAPL
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THE CASS INDEX PERFORMANCE
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Market Cap-Weighted $7,718 10.62% 15.00% 0.38
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THE IMPLICATIONS OF THIS

● Obviously the Cass ScrabbleTM Index is not a real investment 
proposition
• Though if you’re interested drop me an email 

● When evaluating Smart Beta simply looking at the return 
from a back-test is not enough 
• Need to understand what is driving the returns

• Is there a reasonable explanation for the historical outperformance?  
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THE SET OF ALTERNATIVES

● The eight alternative approached considered:

● We followed as closely as possible the index providers 
methodology but stress we were looking at the spirit as 
opposed to the law of construction using the academic 
papers as our guide

*Please see the appendix for the research justifying each alternative as well as the methodology
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• Minimum Variance
• Maximum Diversification
• Risk Efficient
• Fundamentally Weighted

• Equally Weighted  
• Diversity Weighted
• Inverse Volatility
• Equal Risk Contribution
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Mean 
Return

Standard 
Deviation

Sharpe 
Ratio

Market Cap-Weighted 10.62% 15.00% 0.38

Equally-Weighted 11.93% 16.15% 0.43

Diversity-Weighted 10.98% 15.27% 0.39

Inverse Volatility-Weighted 11.79% 14.13% 0.48

Equal Risk Contribution 11.88% 14.93% 0.46

Minimum Variance Portfolio 10.83% 12.04% 0.49

Maximum Diversification 11.62% 14.16% 0.47

Risk Efficient 12.03% 15.62% 0.45

Fundamentally-Weighted 11.89% 14.81% 0.47

FULL SAMPLE RESULTS 1969-2014
RETURN AND RISK

• All 8 of the 
alternative 
indices had a 
higher return

• 5 out of 8 had 
lower volatility

• All 8 had a 
higher Sharpe 
Ratio

18
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LOOKING UNDER THE SMART BETA HOOD I

● The Smart Beta indices tended to:
● hold smaller stocks

● have higher turnover

19
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LOOKING UNDER THE SMART BETA HOOD II

● None of our results incorporate transactions costs, assuming 
a level of transactions costs could be open to criticism 
• We use the turnover and reverse engineer how high transactions 

costs would need to be to eliminate the performance difference

• In our view, in bid-ask spreads would need to have been 
unbelievably high to have eliminated all of the difference

20

1-Way 
Turnover

Transaction 
Cost to Equalize 

Return

Transaction Cost to 
Equalize Sharpe 

Ratio

Market Cap-Weighted 5.4% - -
Equally-Weighted 17.9% 5.4% 3.8%
Diversity-Weighted 7.2% 10.3% 7.9%
Inverse Volatility-Weighted 16.5% 5.4% 6.7%

Equal Risk Contribution 16.9% 5.6% 5.8%
Minimum Variance Portfolio 37.3% 0.3% 2.1%
Maximum Diversification 47.9% 1.2% 1.6%
Risk Efficient 29.6% 3.0% 2.6%

Fundamentally-Weighted 11.7% 10.3% 10.7%
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Total Market Size Value Momentum Residual

Equally-Weighted 1.32% 0.24% 0.35% 0.60% -0.26% 0.38%

Diversity-Weighted 0.36% 0.09% 0.09% 0.18% -0.06% 0.06%

Inverse Volatility-Weighted 1.17% -0.39% 0.16% 1.16% -0.09% 0.33%

Equal Risk Contribution 1.26% -0.11% 0.24% 0.90% -0.17% 0.40%

Minimum Variance Portfolio 0.21% -1.94% -0.01% 1.62% 0.15% 0.40%

Maximum Diversification 1.00% -0.65% 0.28% 0.61% 0.19% 0.58%

Risk Efficient 1.42% 0.04% 0.34% 0.99% -0.50% 0.54%

Fundamentally-Weighted 1.27% -0.01% 0.04% 1.25% -0.48% 0.48%

Cass Scrabble-Weighted 1.53% 0.25% 0.37% 0.42% -0.25% 0.75%

EXPLAINING THE OUTPERFORMANCE

● The bulk of the outperformance can be explained by 
exposure to the factors we already know about

21
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THE INFINITE MONKEY THEOREM

● The infinite monkey theorem states that a monkey hitting 
keys at random on a typewriter keyboard for an infinite 
amount of time will almost surely type a given text, such as 
the complete works of Shakespeare. 

● There are an infinite number of possible combinations of 
portfolio weights for 500 stocks that that would sum to 
100%, some of these will outperform the Market Cap 
approach while others will underperform

● Instead of monkeys devised a robust procedure* to generate 
500 random weights that sum to 100% and then relied on 
some serious computer power to construct 10 million 
randomly weighted indices 
*See Appendix 2 for details of the algorithm
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10 MILLION SIMIAN INDICES vs SMART BETA & 
SCRABBLE INDICES
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CONCLUSIONS

● The back-tested historical risk adjusted returns of “smart 
beta” indices look good when compared to a market cap 
weighted index 

● The majority of the outperformance can be explained by 
exposure to value and size factors.

● 99.82% of random (or simian) indices would also have 
beaten market cap over the same period BUT “smart beta” 
generally beat over 90% of the monkeys.

● A ScrabbleTM weighted index might be a tough sell. 

24



© Cass Business School Smart Beta: A New Era In Index Investing

Is It Possible To Build Smart Beta Portfolios?

Part 3: Factors Assembled
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WHAT WE DID

● Nine S&P Smart Beta Indices

• Sample period December 2001 to September 2015

● What happens if we form ‘passive’ Smart Portfolios?

● Further, can we build ‘Active’ Smart Portfolios?
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THE CANDIDATE INDICES

Mean return 
(%pa)

Standard 
deviation

Sharpe Ratio
Maximum 
Drawdown

Benchmark
S&P500 5.90% 14.60% 0.31 50.90%
Factor indices:
Equal 8.70% 17.30% 0.42 54.90%
Small Cap 9.00% 18.30% 0.41 52.20%
Value 5.60% 15.90% 0.27 56.80%
Momentum 6.30% 14.40% 0.35 44.30%
Low Volatility 8.60% 10.30% 0.70 35.40%
Quality 9.10% 21.10% 0.37 58.60%
Dividend Yield 7.90% 13.80% 0.47 49.30%
Growth 6.10% 14.00% 0.34 45.30%
Low Beta 6.80% 12.40% 0.44 44.70%

Similar to our own indices in paper 2
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FORMING SMART BETA PORTFOLIOS 
SIMPLE COMBINATIONS

● Equal Weighting
• 11.11% invested in each of the 9 candidate indices

● Risk Balanced
• The weight is inversely proportional to the historical volatility of the 

index

• Each index weight is 1/σ scaled so the sum is 100%

28
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EQUAL WEIGHTED AND RISK BALANCED WEIGHTED 
PORTFOLIOS
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Factor Index Portfolios S&P500 Equally-Weighted Risk Balanced
Annualised Returns 5.90% 7.80% 7.50%
Annualised Volatility 14.60% 14.40% 13.70%
Sharpe Ratio 0.31 0.45 0.44
Max. Drawdown 50.90% 48.60% 48.40%
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APPLYING MOMENTUM AND TREND FOLLOWING

● Momentum
• We construct a simple relative momentum portfolio by taking the 

best 5 performing strategies over the previous 6 months, and equally 
weight them (20% in each) 

• This is sometimes called ‘cross-section’ momentum

● Trend Following
• Of course the performance of all these strategies may be falling 

together, so why not only pick those in an upward trend?

• If the trend is downward, place the said amount in cash or T-Bills

• This is sometimes called ‘absolute momentum’ or ‘trend following’

• We determine the trend using an 8 month moving average rule

30
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APPLYING MOMENTUM AND TREND FOLLOWING
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S&P500 Relative Momentum Trend Following

Factor Index Portfolios S&P500 Momentum Trend following

Annualised Returns 5.9% 8.4% 9.1%

Annualised Volatility 14.6% 14.0% 8.9%

Sharpe Ratio 0.31 0.50 0.87

Max. Drawdown 50.9% 46.3% 13.7%
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OPTIONALITY IN STRATEGY PAYOFFS
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CREATING A MORE DYNAMIC PORTFOLIO 

● Is there a role for economics in creating portfolios?
• There is a growing academic literature relating asset returns to 

economic variables and bull and bear regimes in stock markets

● We took 5 factor indices (market cap, small cap, value, 
momentum & low beta) and examined the empirical relation 
with a small number of forward-looking economic variables, 
including the VIX and the PMI
• we then created indicators of bull/bear regimes and use them to 

switch between T-Bills and the factor indices themselves to form an 
active equally-weighted portfolio
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FIVE SMART BETA INDICES WITH DYNAMIC 
PORTFOLIO SELECTION 
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S&P500 Five index market signal portfolio

Factor Index Portfolios S&P500 Equally-weighted 5 factor active portfolio

Annualised Returns 5.9% 8.5% 13.4%

Annualised Volatility 14.6% 14.3% 10.9%

Sharpe Ratio 0.31 0.49 1.10

Max. Drawdown 50.9% 47.5% 13.6%
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How Does Smart Beta Change Investors’ 
Approach To Due Diligence?

Part 4: Monitoring Challenges
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AN IDEAL ACTIVE MANAGER?

● According to John Chatfeild-Roberts  a good fund manager 
should:
• have the necessary skills built into them;

• be inquisitive, hardworking and ultra-competitive;  

• have the ability to think independently and focus on what’s relevant 
rather than becoming bogged down with irrelevancies;

• have the humility to admit and rectify mistakes;

• stick to a proven investment process even when it is not currently 
working in their favour;

• be sufficiently experienced, having been exposed to several market 
cycles; and

• be in tune with the psychology of the market.
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LESSONS FROM BEHAVIOURAL FINANCE

● Manager behavioural biases:
• subconsciously create and extrapolate patterns and trends from a series of random 

events, without investigating the reasons for the apparent trend, known as 
representativeness;

• place too much or too little emphasis on the likelihood of an extreme event occurring, 
based on how easy it is to visualize the event;

• overestimate one’s own investment knowledge, skill and ability, resulting in 
undiversified portfolios and excessive portfolio turnover to the detriment of investment 
returns, in other words, the tendency towards overconfidence;

• leave forecasts unadjusted even in the face of new, contradictory evidence, known as  
‘adjustment conservatism’;

• place too much emphasis on irrelevant facts and figures, e.g. the price paid for a 
stock, when considering the stock’s future prospects and the price at which to sell, 
known as ‘anchoring’.

• There are others!
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RULES-BASED INVESTING

● Man vs machine!
• It is true that rules-based investing can be implemented to eliminate 

behavioural biases etc

● But
• Aren’t all these rules data-mined and back-tested to death?

• Is the manager capable of tracking the chosen index/strategy?

• Is the index provider reputable and reliable?  Have they signed up to 
the IOSCO Principles for Financial Benchmarks?

● But
• In the end investors are faced with a choice between rules and 

discretion

38
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Part 5: Recent Work With 7 
Global Equity Factors
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INTRODUCTION

● Lessons:

i. Winning strategies change over time

ii. Combinations of strategies perform better

iii. MV analysis suggest concentrated portfolios

iv. ‘Active’ space suggests much more diversified portfolios
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WORLD 6 AND 7 FACTORS
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CUMULATIVE RETURNS BY FACTOR:6 FACTORS
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CUMULATIVE RETURNS:7 FACTORS
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COMBINING FACTORS
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OUT-OF-SAMPLE:ROLLING ONE-YEAR AHEAD
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EFFICIENT FRONTIER:6 FACTORS
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EFFICIENT FRONTIER:7 FACTORS
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ACTIVE SPACE: EFFICIENT FRONTIER:6 FACTORS
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6 FACTORS: WHICH ONES IN A DYNAMIC MIN VARIANCE 
PORTFOLIO?
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6 FACTORS: WHICH ONES IN A DYNAMIC MAX SHARPE?
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7 FACTORS: MAX SHARPE, WHICH ONES?
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7 FACTORS: MIN VARIANCE, WHICH ONES?
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Appendix 1:

Constructing The Alternatives

54
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CONSTRUCTING THE SET OF ALTERNATIVES

● Equally-weighted
• Each stock is given a weight of 1/n. This very simple and perhaps somewhat 

naive approach to determining weights was examined by DeMiguel, Garlappi
and Uppal (2009) and found to outperform many more sophisticated 
methods due to the avoidance of parameter estimation errors. 

● Diversity-weighted
• This approach was first proposed by Fernholz et al (1998) Effectively it 

involves raising the Market-cap weight (w) of each constituent by the value 
p, that is wp, where p is bounded between 1 and 0.  The weight of each 
index constituent is then calculated by dividing its wp weight by the sum of 
all wps of all of the constituents in the index.  When p is set to 1 then the 
constituent weights are equal to  Market-cap weights and when p is set to 0 
the weights are equivalent to equal weights. We use p=0.76 which is the 
value used in the original paper. 
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CONSTRUCTING THE SET OF ALTERNATIVES

● Inverse volatility
• In the mid-1970s Haugen and Heins published a paper that demonstrated 

that low volatility stocks tended to outperform high volatility stocks, since 
then there has been much research on the “low-volatility anomaly”.  We 
calculate the historical return variance of each stock using five years of 
monthly data.  We then calculate the inverse of this value, so that the stock 
with the lowest volatility will have the highest inverted volatility.  We then 
simply summed these inverted variances.  The weight of stock i is then 
calculated by dividing the inverse of its return variance by the total inverted 
return variance.  This process therefore assigns the biggest weight to the 
stock with the lowest volatility, and the lowest weight to the stock with the 
highest return volatility. 
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CONSTRUCTING THE SET OF ALTERNATIVES

● Equal risk contribution
• Maillard et al (2008) propose weighting each stock such that that the 

contribution of each stock to the risk of the overall portfolio is equal. We use 
a covariance matrix based on 5 years history (shrunk using Ledoit and Wolf) 
and the algorithm proposed in this paper to calculate equal risk contribution 
weights. 

● Minimum variance
• The minimum variance approach uses historical data in an attempt to 

identify the weights of the global minimum variance portfolio. Authors such 
as Clarke, de Silva, and Thorley (2006) have identified strong performance 
of minimum variance portfolios.  We use the same shrunk covariance matrix 
as before and cap individual weights at a maximum of 5%. 
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CONSTRUCTING THE SET OF ALTERNATIVES

● Maximum diversification
• Choueifaty and Coignard (2008) introduce a measure of portfolio 

diversification, called the “Diversification Ratio”, which is defined as the ratio 
of a portfolio’s weighted average volatility to its overall volatility.  Poorly 
diversified portfolios that have either concentrated weights, highly correlated 
holdings or even both will exhibit relatively low diversification ratios. 
Choueifaty and Coignard propose an optimisation process to identify the 
‘most diversified portfolio’ which is defined as the portfolio with the highest 
diversification ratio.  Intuitively it is apparent that if expected returns are 
proportional to their volatility, the maximum diversification portfolio will be 
the same as the maximum Sharpe ratio portfolio (this can be proven 
mathematically).  Again we use the same shrunk covariance matrix and cap 
individual weights at a maximum of 5%. 
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CONSTRUCTING THE SET OF ALTERNATIVES

● Risk efficient
• Amenc, Goltz, Martellini, and Retkowsky (2010) propose a very similar 

methodology to maximum diversification except that they assume that the 
expected return on each constituent is assumed to be linearly related to the 
downside-deviation of its return. They also group stocks into deciles of semi-
deviation and assign each stock the median of its decile. The second stage 
then involves finding the portfolio with the maximum expected return 
(proxied by the median downside deviation of each stock’s decile) with the 
lowest portfolio return standard deviation. To prevent the optimiser from 
creating a portfolio with concentrated single stock exposures, they impose 
restrictions on the constituent weights:

– lower limit = 1/(λ x N) x 100%

– upper limit = λ/N x 100%

• where N represents the total number of stocks under consideration and λ is     
a free parameter. We set λ equal to 2 and use the same shrunk covariance 
matrix. 
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CONSTRUCTING THE SET OF ALTERNATIVES

● Fundamental Indexing
• Arnott et al. (2005) argue that alternative measures of the size or scale of a 

company may be just as appropriate a basis for determining constituent 
weights as the more commonly used metric of market capitalisation. We 
calculate four different indices that weight stocks according the 5 year 
historical average of total dividends, cash-flow, book value of equity and 
sales. We then take the average weights of these four indices to form a 
fundamental composite index. 
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Appendix 2:

Constructing The Random Indices
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WHERE TO FIND AN INFINITE NUMBER OF MONKEYS?
(NO MONKEYS WERE HARMED IN THIS EXPERIMENT)

● There are an infinite number of combinations of weights for 
500 stocks that sum to 1
• 1st step is to make this a finite universe by specifying a minimum 

increment w of 0.2%

• Objective is to sample randomly and uniformly from the set of 
feasible weights

• For example with 3 stocks, the set of feasible weights form a hyper-
plane 
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WHERE TO FIND AN INFINITE NUMBER OF MONKEYS?
(NO MONKEYS WERE HARMED IN THIS EXPERIMENT)

● Use an algorithm adapted from Smith and Tromble (2004)

● Given n stocks, 4 steps:
1. Sample n-1 numbers uniformly at random from the set {1, 2, ... 

(1/w)+n-1)} without replacement.

2. Sort the numbers in ascending order and append a zero to the 
beginning of the sequence and (1/w +n) to the end of the sequence.

3. Take the difference between successive numbers in the sample and 
subtract 1 from each.

4. Multiply these numbers by w.
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WHERE TO FIND AN INFINITE NUMBER OF MONKEYS?
(NO MONKEYS WERE HARMED IN THIS EXPERIMENT)

● Scatter plot of the result of 10,000 repetitions of the above 
algorithm for n=3 and w=0.1%
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PROOF OF ROBUSTNESS

● Though the mean of our weights will be the same as equal 
weight there is no bias towards any weighting scheme:

● Consider the example of a portfolio containing 100 stocks 
(n=100) where the minimum increment is set at 1% (w
=0.01) 

● The first step involves selecting 99 random numbers from the set 
{1, 2, ... 199}.  If we suppose that the numbers chosen are {2, 
4, 6, … 198} 

● then step 2 will result in the following set of 101 numbers {0, 2, 
4, 6,…..,198, 200}.  

● Step 3 produces 100 identical numbers {1, 1,….1} 

● Hence step 4 will generate an equally weighted portfolio with 
each stock given a weight equal to 1% or 1/n.  
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PROOF OF ROBUSTNESS

● If instead the 99 random numbers chosen had been {1, 2, 3, ... 
99} then the set of weights produced would be zero for the first 
99 stocks and 100% in the 100th stock. 

● Since choosing {2, 4, 6, … 198} and choosing {1, 2, 3, …, 
99} are equally likely hopefully this demonstrates that the 
randomly generated portfolio weights are unbiased. 
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CONSTRUCTING THE RANDOM INDICES

● Using the algorithm we generate 500, weights that sum to 
one, with a minimum increment of 0.2%.  
• Apply these weights to the universe of 500 stocks sampled at 

December 1968

• Calculate the performance of the resulting index over the next twelve 
months.  

• Apply another set of randomly generated weights to the 500 stocks 
sampled in December 1969, and again calculate the performance of 
this randomly constructed index over the next 12 months. 

• Repeated for each year in our sample until we produce an index 
spanning January 1969 to December 2014.

● Repeat the whole process ten million times………..
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